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A Novel Method of Estimation of DPOAE Signals

A. K. Ziarani* and A. Konrad

Abstract—A new method of measurement of distortion product
otoacoustic emission (DPOAE) signal level based on a recently introduced
nonlinear adaptive method of extraction of nonstationary sinusoids is
presented. Essentially, three units of such an algorithm are employed to
extract and measure the two stimuli and the DPOAE signal. Each unit
has the capability of locking on a specified sinusoidal component of the
input signal and tracking its variations over time. Performance of the
proposed method is demonstrated with the aid of computer simulations
and is verified in laboratory using recorded clinical data. Comparison is
made between the proposed technique and existing methods. The proposed
method features structural simplicity which renders it particularly
attractive for implementation on both software and hardware platforms.
It offers a high degree of immunity with regard to background noise and
parameter variations. Compared to conventional methods, the proposed
method offers a shorter measurement time which is of significant value in
clinical examinations.

Index Terms—Adaptive signal processing, otoacoustic emissions.

I. INTRODUCTION

Distortion product otoacoustic emissions (DPOAEs) are very low
level stimulated acoustic responses to two pure tones presented to the
ear canal. DPOAE measurement provides an objective noninvasive
measure of peripheral auditory function and is used for hearing assess-
ment especially in newborns [1]. DPOAEs have been recognized for a
number years [2], [3]. However, DPOAE measurement is considered
an active area of research because of the challenging nature of the
signal processing task.
In this type of otoacoustic test, two pure tones with frequencies f1

and f2 are presented to the cochlea. For best results, f2 is usually
chosen as 1:2f1. Since the ear is a nonlinear structure, a number of
very low level distortion products are generated due to the intermodula-
tion process within the cochlea. Among various distortion products, the
component with frequency fd = 2f1�f2 is usually the strongest. The
level of such a distortion product (commonly referred to as the DPOAE
signal) is taken as an index of the functionality of the ear. Estimation
of such a weak signal buried under two strong stimuli and other inter-
modulations in a potentially noisy background is a challenging signal
processing problem.
Conventionally, the discrete Fourier transform (DFT) has been used

as the main signal processing tool to estimate the level of the DPOAE
signals. Application of the DFT to this problem has a number of short-
comings, among which the long measurement time is the most pro-
nounced one [4]. Long measurement time is usually required for the
acquisition of a sufficiently large amount of data which, when aver-
aged, will reduce the overall background noise effect. In addition to the
need to increase the measurement time, the tests are usually required
to be conducted in low noise environments such as sound-proof rooms
or other types of sound-proof enclosures.
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Fig. 1. Block diagram representation of the proposed method of DPOAE estimation.

In an attempt to devise high performance DPOAE estimation
techniques, adaptive signal processing techniques and maximum-like-
lihood estimators have been employed. Such techniques generally
offer better performance in terms of measurement time which may
be interpreted as their higher noise immunity compared to that of the
DFT.

This paper presents a method of DPOAE signal measurement which
employs, as its main building block, a recently introduced nonlinear
adaptive signal processing algorithm. The formulation, mathematical
properties and DSP implementation of the employed signal processing
algorithm are presented in [5] where detailed discussions on the sta-
bility and convergence issues of the algorithm are also presented. Some
of the applications of the employed algorithm in diverse areas of engi-
neering are presented in [6], [7].

II. METHOD

The proposed signal processing method employs three units of the
algorithm presented in [5], [6] to construct a high performance DPOAE
estimation algorithm. Each unit is capable of focusing on and extracting
a prespecified sinusoidal component of its input signal which may con-
tain other components and noise. More importantly, it can effectively
follow variations in the amplitude, phase (and frequency) of the ex-
tracted sinusoidal component. Although the underlying mathematics
ensuring the stability and performance of such an algorithm is very
complex, its structure remains extremely simple. It is found to be very
robust with respect to variations in the internal settings of the control-
ling parameters, as well as external conditions such as the presence of
noise, and exhibits superior performance over existing linear adaptive
and DFT-based algorithms in terms of convergence speed versus accu-
racy tradeoff [5].

The input DPOAE signal is often assumed to consist of two pure si-
nusoids with frequencies f1 and f2 at a very high level (usually about
50 to 70 dB SPL) and a very low level DPOAE 2f1�f2 at about�5 to
15 dB SPL. It is contaminated by a noise usually considered to be about
0 to 20 dB SPL. In fact, the noise represents the totality of all undesired
signals that may be present in the environment in which the examina-
tion is being conducted, the sum of all generated intermodulations as
well as the unavoidable background noise. It has been observed that
the estimation error increases with the increase of the amount of back-
ground noise. This can be compensated by re-adjusting the parameters
of the algorithm to reduce the error at the expense of the convergence
speed. Because of the excessive degree of the noise, one single unit
assigned to extract the DPOAE signal out of the input signal exhibits
poor performance in terms of the estimation error, (or the convergence
speed).

In the block diagram of Fig. 1, the first two units are assigned to ex-
tract the two stimuli. They effectively do so with very small errors. The
extracted stimuli are then subtracted from the input signal to produce
a signal, of which DPOAE has a higher relative portion. The third unit
is then set to extract the DPOAE signal. To further enhance the perfor-
mance of the DPOAE estimator, some preprocessing, postprocessing
as well as intermediary filtering stages have been added.
The stage of preprocessing consists of preliminary normalization and

bandpass filtering. The purpose of the normalization process is to am-
plify the input signal to bring it to a certain level on the basis of which
the setting of the parameters of the units may be adjusted. The bandpass
filtering is intended to attenuate all components except the DPOAE
signal as much as possible to enhance the quality of the input signal.
This can be achieved bymeans of a simple second order bandpass filter,
the center frequency of which is set to be that of the DPOAE signal.
The intermediate signal out of which the two stimuli are removed

may be directly input to a third unit for the extraction of the DPOAE
signal. Since elimination of the two stimuli needs certain convergence
time, at the very early initial moments a large portion of the two stimuli
exists which will set the initial operational point of the third unit too
far away from the true level of the DPOAE signal. To overcome this,
a time-gating process may be employed to delay the transfer of the
intermediate signal to the third unit. This is accommodated in the mid-
processing unit of Fig. 1. The output of this unit is zero and remains zero
for a short period of time until a more or less steady state condition for
the two units is achieved. The mid-processing may also include some
normalization and bandpass filtering just like the preprocessing stage.
The postprocessing unit consists of denormalization of the DPOAE

signal and its level to restore the original values as well as some (low-
pass) filtering to further smooth out the estimate of the DPOAE signal
and its level.

A. Adjustment of Parameters

An important part of the design of the proposed DPOAE estimation
method is the adjustment of the parameters. In each application, one has
to roughly define the nature of the input signal and the desired speed
(or the tolerable error) to be able to appropriately adjust the parameters.
For this matter, the level of the two stimuli are assumed to be about
60 dB SPL, the level of the DPOAE signal 15 dB SPL and the noise
floor 10 dB SPL. A convergence time of less than one second for each
DPOAE level measurement and an estimation error of less than 15%
seem to be sufficient from a practical point of view. This definition of
the problem is a rough guideline for the design. However, and thanks to
the robust and adaptive nature of the employed algorithm, variations of
orders of magnitude in these values are observed to be easily tolerated
by the system.
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Fig. 2. Illustration of the performance of the proposed DPOAE estimator
using simulated data. The conditions in this example are in accordance with
the defined conditions of the problem.

The values of the �-parameters (refer to [5] for details) for the two
units assigned to extract the two stimuli are �1 = 200 and �2 =
20000. The values of the �-parameters for the third unit assigned to
extract the DPOAE signal are �1 = 200 and �2 = 20.

The mid-processing stage consists of a time-gating (switching at
t = 100 ms), a gain (or normalization) of 1000 and a bandpass filter.
The estimate of the amplitude by the third unit is transferred to the
postprocessing unit. The post processing is a denormalization factor of
1/1000 and a smoothing low-pass filter. The output of this filter is the
estimated DPOAE level.

III. RESULTS

Performance of the proposed method is demonstrated in this section
using both flexibly controlled simulated data and a set of real clinically
recorded signal.

A. Simulated Data

For the simulations presented in this section, the frequency of the
first stimulus (f1) varies over the range of 500 to 4000 Hz. For each
numerical experiment, f1 is randomly generated within this range. The
frequencies of the second stimulus and the DPOAE are then set as
f2 = 1:2f1 and fd = 2f1 � f2, respectively. The initial phases of
the simulated stimuli and the DPOAE are randomly chosen within 0 to
2�. The simulated noise added to the input signal is a zero-mean white
Gaussian noise for the first two experiments and is a pink Gaussian
noise for the third experiment. The levels of the stimuli, DPOAE and
noise floor are specified in each case.

Fig. 2 presents the performance of the proposed DPOAE estimator
when the levels of the two stimuli are randomly generated within the
range of 0.8 to 1 V (roughly corresponding to a relative 60 dB level)
while the DPOAE signal has a level of about 6 mV (corresponding to a
relative 15 dB level). The noise floor is at about 10 dB. The conditions
in this example are in accordance with the defined conditions of the
problem. It is observed that the convergence is achieved well within
the desired one second test period with a small estimation error.

Fig. 3. Illustration of the performance of the proposedDPOAE estimator using
simulated data. Compared to the conditions of Fig. 2, the noise floor in increased
about four times.

In another numerical experiment, the level of the noise floor is in-
creased about four times (corresponding to about 28 dB level). Fig. 3
shows the estimation process. The estimation is achieved well within
the desired one second test period with a tolerable estimation error. The
present parameter setting easily accommodates noise levels of up to 30
dB, which is believed to be an exaggeration of the actual scenarios.
However, if the expected noise floor happens to be even higher, one
can sacrifice the speed by re-adjusting the parameter settings. Gener-
ally, one needs to take into account the following factors when choosing
the values of parameter settings: some idea about the potential back-
ground noise, the desired speed of convergence and the tolerable error.
Experience of the authors as well as that of the collaborators in compa-
niesmanufacturingDPOAEmeasurement equipment confirms the suit-
ability of the suggested parameter settings in practical DPOAE mea-
surement tests.
Typical environmental noise experienced during the recording of sig-

nals within the acoustic range is pink, in which the power density de-
creases with increasing frequency over a finite frequency range so that
each octave contains the same amount of power. To present a more re-
alistic demonstration of the performance of the proposed method, the
experiment of Fig. 3 is repeated using a pink background noise. Fig. 4
illustrates the estimation process where f1 is about 3500 Hz. It is ob-
served that the performance of the proposed method is better in this
case as opposed to the case of the contamination bywhite noise (Fig. 3).
This can be explained by the fact that given the nonuniform distribution
of the noise power, less noise exists around the frequencies of interest.
This renders the estimation process more accurate. Further experiments
show that at lower frequencies of f1, the effect of pink noise is more
destructive than that of the white noise, as would be expected theoreti-
cally.

B. Recorded Data

One set of clinical data recorded at Rotman Research Institute of
the University of Toronto is used to verify the functionality of the
proposed method. The recording is conducted using specialized otoa-
coustic probes. About 20 seconds of recording is available. The total
length of the recording is used to obtain the frequency spectrum of the
signal, which in turn can serve as a means of guessing the true value of
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Fig. 4. Illustration of the performance of the proposedDPOAE estimator using
simulated data. This is the same experiment as that of Fig. 3, but with pink
background noise.

Fig. 5. Illustration of the performance of the proposedDPOAE estimator using
the first set of clinically recorded data.

the DPOAE level. The frequencies of the two stimuli and the DPOAE
are f1 = 1618, f2 = 1797, and fd = 1438 Hz, respectively. Fig. 5
presents the performance of the proposed method. It is observed that
the convergence is achieved within the desired one second test period
with a small estimation error.

IV. DISCUSSION

One of the recently proposed methods presented by Ma and Zhang
in [8] is used in this section for a quantitative comparison with the
proposed method. The method presented in [8] is an optimal max-
imum-likelihood estimator for the extraction of DPOAE signals. Supe-
rior performance of the method, especially in cases where DFT exhibits
leakage effect is observed. The signal model is assumed to consist of
the two stimuli and the DPOAE signal with noise. In [8], simulated

Fig. 6. Comparison of the performance of the proposed method with the
method of Ma and Zhang.

data are used for the two stimuli and the DPOAE signal whereas the
background noise is a recorded noise.
Simulated data were used for the comparison of the method of

Ma and Zhang with the proposed method. Similar results to those
presented in [8] were obtained using a simulated noise of zero-mean
white Gaussian distribution as the background noise. For both
cases, the numerical experiments involve two stimuli of frequencies
f1 = 2:454 kHz and f2 = 3:003 kHz. The DPOAE signal is, thus, at
fd = 2f1 � f2 = 1:905 kHz. The sampling frequency is chosen as
fs = 10:24 kHz. The DPOAE signal is at 0 dB level while the two
stimuli are at 65 dB. The experiment was repeated several times for
different levels of the noise floor. Fig. 6 compares the performance of
the two methods for varying levels of the noise floor. The index of the
performance is taken to be the normalized mean squares error incurred
in the estimation process. In the case of the proposed method, the
vector of the estimated level of the DPOAE is formed after the signal
is stabilized in the time domain (after about 500-ms delay).
When the incurred error exceeds the signal level, the signal is no

longer recoverable. It is observed that the proposed method is less sen-
sitive to the level of the background noise. In fact, as soon as the noise
level exceeds the DPOAE level, the signal is totally lost and the es-
timation process fails. The proposed method of this paper has a very
high degree of noise immunity, about 20 dB more than that of Ma and
Zhang.

V. CONCLUSION

A method of measurement of DPOAE signal level employing a
recently introduced nonlinear adaptive signal processing technique
is presented. Performance of the proposed method is demonstrated
using both simulated and real clinical data, and a comparison of its
performance with that of one of the existing methods is presented. The
main features of the proposed method of DPOAE signal measurement
are its 1) structural simplicity, 2) high noise immunity and robustness,
and 3) relatively high speed of convergence. Given the low complexity
of the proposed method, it requires low level of computational
resources, which in turn translates into less expensive equipment.
High noise immunity and robustness of the proposed method render it
suitable for practical clinical examinations which may be conducted
in highly noisy backgrounds, perhaps without involving sound-proof
examination rooms. This again translates into less expensive medical
equipment. Also, given that the reduction in the level of the stimuli
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translates into a higher relative degree of background noise, the high
noise immunity feature of the proposed method may be used to reduce
the level of the stimuli for a more patient friendly examination. High
speed of convergence of the proposed method is useful in reducing the
examination time which again results in a more patient friendly and
time effective clinical examination.
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Interictal Spike Detection Using the Walsh Transform

Malek Adjouadi*, Danmary Sanchez, Mercedes Cabrerizo,
Melvin Ayala, Prasanna Jayakar, Ilker Yaylali, and Armando Barreto

Abstract—The objective of this study was to evaluate the feasibility of
using the Walsh transformation to detect interictal spikes in electroen-
cephalogram (EEG) data. Walsh operators were designed to formulate
characteristics drawn from experimental observation, as provided by
medical experts. The merits of the algorithm are: 1) in decorrelating the
data to form an orthogonal basis and 2) simplicity of implementation.
EEG recordings were obtained at a sampling frequency of 500 Hz using
standard 10–20 electrode placements. Independent sets of EEG data
recorded on 18 patients with focal epilepsy were used to train and test the
algorithm. Twenty to thirty minutes of recordings were obtained with each
subject awake, supine, and at rest. Spikes were annotated independently
by two EEG experts. On evaluation, the algorithm identified 110 out
of 139 spikes identified by either expert (True Positives = 79%)
and missed 29 spikes (False Negatives = 21%). Evaluation of
the algorithm revealed a Precision (Positive Predictive Value) of 85%
and a Sensitivity of 79%. The encouraging preliminary results support
its further development for prolonged EEG recordings in ambulatory
subjects. With these results, the false detection (FD) rate is estimated at
7.2 FD per hour of continuous EEG recording.

Index Terms—Epileptogenic data, focal epilepsy, interictal spike detec-
tion, Walsh transform.

I. INTRODUCTION

Algorithms and methods for the automated detection of interictal
spikes in the scalp electroencephalogram (EEG) can be very useful,
especially during long-term EEG monitoring sessions, and may serve
as a support mechanism to the decisions made by EEG experts. Several
earlier studies [1]–[12] have described automated spike detection
algorithms. Rule-based detection algorithms have explored two
characteristics that are considered as most reliable in the detection of
spikes: the fast rise and decay of the spike, and the sharpness of its peak.
The spatio-temporal context is taken into account in several studies
using different approaches: context-based detection [1], [10]–[12],
state-based detection [2], neural networks [3]–[6], wavelet theory [7],
[8], and expert systems [9], [10], to cite a few. An implementation
example of the Walsh transform to stereo vision is provided in [13].
This study evaluates the feasibility of developing a spike detection al-

gorithmusingtheWalshoperator.TheinputEEGsignalsaredecorrelated
into signals with different orders (degree of sharpness) and different di-
mensions (width of the operator) using the Walsh transformation.

II. METHODS

A. Subjects

Eighteen children with focal epileptic seizures served as subjects for
this study. All of the procedures followed strict protocols pursuant to
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